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Abstract
The two-photon Rabi Hamiltonian is a simple model describing the interaction
of light with matter, with the interaction being mediated by the exchange of
two photons. Although this model is exactly soluble in the rotating-wave
approximation, we work with the full Hamiltonian, maintaining the non-
integrability of the model. We demonstrate that, despite this non-integrability,
there exist isolated, exact solutions for this model analogous to the so-called
Juddian solutions found for the single-photon Rabi Hamiltonian. In so doing
we use a Bogoliubov transformation of the field mode, as described by the
present authors in an earlier publication.

PACS numbers: 03.65.−w, 42.50.−p, 32.80.−t

1. Introduction

The Rabi Hamiltonian (RH), introduced by Rabi in 1937 [1], has long served as a popular
and successful model of the interaction between matter and electromagnetic radiation. The
Hamiltonian provides a description of an atom approximated by a two-level system interacting
via a dipole interaction with a single mode of radiation [2]. Typically, this Hamiltonian is
studied within the rotating-wave approximation (RWA), which results in the well-known
Jaynes–Cummings model (JCM) [3]. The JCM is exactly integrable, whereas the full RH
is not.

The two-photon Rabi Hamiltonian (TPRH) is an obvious extension of the original
RH, where the atomic transitions are induced by the absorption and emission of two
photons rather than one. Such non-linear optical processes have been of considerable
interest [4], with applications including two-photon lasers and two-photon optical bistability
[5]. The TPRH is not known to be integrable, whereas its RWA counterpart is, as has
been demonstrated by Sukumar and Buck [6] and Compagno and Persico [7]. It should
be noted from the outset that the TPRH, and its RWA variant, are phenomenological
Hamiltonians, in that they neglect the effects of intensity-dependent Stark shifts of
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the atomic levels [8]. Nevertheless, they do provide useful prototypes of two-photon
interactions [9], and their similarity with the RH and its RWA variant allows fruitful
comparisons to be made [10]. The TPRH has been of considerable theoretical interest
due to the connection of the two-photon interaction to the group SU(1, 1) and to the
squeezed states [11]. Experimentally, the observation of two-photon Rabi oscillations in
experiments with Rydberg atoms [12, 13] has also contributed to the interest in this type of
model.

Comparatively little attention has focused on the TPRH without the RWA. A notable
exception to this is the work of Ng et al [14], who have used numerical diagonalization
in a truncated basis to investigate the spectrum and simple dynamics of the system. Their
analysis indicates that the spectrum of the full Hamiltonian is significantly different to the
RWA spectrum, and that making the RWA also alters appreciably the dynamics. These results
fit in well with other work regarding the RWA, which suggest that the consequences of making
this approximation may be greater than usually thought [15, 16]. Here we shall exclusively
consider the full Hamiltonian without the RWA.

In this communication we discuss a number of exact results for the TPRH without the
RWA. After introducing the Hamiltonian and examining its connection to the group SU(1, 1),
we consider the limit of the Hamiltonian in which the atomic levels become degenerate. In
so doing we obtain a condition on the range of atom-field couplings for which this model
remains mathematically valid. We then proceed to obtain a set of isolated, exact solutions for
the Hamiltonian. Their counterparts are well known for the single-photon RH, where they are
referred to as Juddian solutions [17, 18]. Such solutions tell us a great deal about the structure
and symmetries of this type of non-adiabatic model. They may also serve as benchmarks
for numerical techniques and as foundations for perturbative treatments. Furthermore, the
existence of isolated exact solutions in non-integrable quantum models is also of interest from
the perspective of studying possible quantum chaos in such systems [19, 20]. In determining
these solutions for the TPRH we shall utilize an appropriate Bogoliubov transformation of the
field mode, an approach outlined by the present authors in a previous publication [21], to be
referred to as I hereafter.

2. The Hamiltonian

The TPRH describes the interaction of a two-level atom with a single bosonic field mode via a
two-photon interaction. The field is described by the annihilation and creation operators, b and
b† respectively, which obey the usual commutation relation, [b, b†] = 1. The two-level atom
is described by the Pauli pseudo-spin operators {σk; k = x, y, z}, which satisfy the SU(2)

commutation relations, [σx, σy] = 2iσz, plus cyclic permutations. We define the raising and
lowering operators as σ+ ≡ σx + iσy , σ− ≡ σx − iσy .

In terms of these operators, the TPRH is given by

H2γ = ω0

2
σz + ωb†b + g((b†)2 + b2)(σ+ + σ−) (1)

where ω0 is the atomic level splitting, ω is the frequency of the boson mode and g is the
coupling strength of the atom to the field. Note that here we have the operators (b†)2 and b2

inducing atomic transitions, instead of b† and b, as we would have in the single-photon RH. It
is convenient to rescale the Hamiltonian as H2γ = ωH̃ 2γ , where

H̃ 2γ = ω̃σz + b†b + λ((b†)2 + b2)σx (2)
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and ω̃ ≡ ω0
2ω

and λ ≡ 2g

ω
. The TPRH is not known to be integrable. Like the single-photon RH,

the TPRH possesses a conserved quantum number, which in the present case is π2γ , namely
an eigenvalue of the operator

�2γ ≡ exp
[ iπ

2
(b†b + σz + 1)

]
(3)

= −σz exp
[ iπ

2
b†b

]
. (4)

It is simple to show that [H2γ ,�2γ ] = 0. The operator exp
(
iπ

2 b†b
)

is the square root of the
elementary parity operator exp(iπb†b) = �2

2γ , and has been denoted as the Fourier operator.
Its role in squeezing has been described in detail elsewhere [22].

As the level-flip in the TPRH is induced by two photons, the condition for the system to
be on resonance is ω0 = 2ω, or alternatively that ω̃ = 1.

2.1. The TPRH and the SU(1, 1) group

The TPRH contains only quadratic combinations of the bosonic creation and annihilation
operators. Consequently, we may write the Hamiltonian in terms of the three operators
K0,K+ and K−, which are defined as

K+ ≡ 1
2 (b†)2 K− ≡ K†

+ = 1
2b2 K0 ≡ 1

2b†b + 1
4 . (5)

These operators form a closed Lie algebra SU(1, 1), defined by the commutator relations

[K0,K±] = ±K± [K−,K+] = 2K0. (6)

The corresponding invariant Casimir operator C is given by

C ≡ K2
0 − 1

2 (K+K− + K−K+) (7)

which commutes with all three generators. For our purposes here, we shall use a unitary
irreducible representation of this algebra known as the positive discrete series D+(k) [23]. In
this representation the basis states {|k,m〉} diagonalize the operator K0

K0|k,m〉 = (m + k)|k,m〉 (8)

for k > 0 and m = 0, 1, 2, . . . . The action of the Casimir operator in this representation is

C|k,m〉 = k(k − 1)|k,m〉. (9)

The operators K+ and K− are Hermitian conjugate to each other and act as raising and lowering
operators respectively within D+(k),

K+|k,m〉 =
√

(m + 1)(m + 2k)|k,m + 1〉
(10)

K−|k,m〉 =
√

m(m + 2k − 1)|k,m − 1〉.
For the single-mode bosonic realization of SU(1, 1) that we require here, the Bargmann index
k is equal to either 1

4 or 3
4 . In terms of the original Bose operators the states |k,m〉 are given

equivalently as
∣∣ 1

4 ,m
〉 ≡ 1

(2m)!
(b†)2m|0〉 ∣∣ 3

4 ,m
〉 ≡ 1

(2m + 1)!
(b†)2m+1|0〉

m = 0, 1, 2, . . . . (11)

Hence, by switching to a SU(1, 1) representation we explicitly acknowledge that we are
splitting the Hilbert space of the boson field into two independent subspaces. Each subspace
is labelled by the Bargmann index k = 1

4 , 3
4 and only contains either all even

(
k = 1

4

)
or all
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odd
(
k = 3

4

)
number states. It is interesting to note in passing that the algebra SU(1, 1) may

also be used to describe a system of two bosonic modes, which interact in such a way as to
preserve the total particle number [24, 25].

In terms of the SU(1, 1) generators, the TPRH can be written as

H2γ = ω0

2
σz + 2ω

(
K0 − 1

4

)
+ 2g (K+ + K−) (σ+ + σ−) (12)

with the rescaled Hamiltonian being given by

H̃ 2γ = ω̃σz + 2
(
K0 − 1

4

)
+ 2λ (K+ + K−) σx. (13)

2.2. Squeezing and SU(1, 1)

The relationship between the group SU(1, 1) and squeezing has been described in detail
elsewhere [26] and the use of squeezed states in finding exact isolated solutions has been
previously discussed in I. Here we simply note that the general squeezing operator S can be
written as

S(σ, β) = exp(σK+)(1 − |σ |2)K0 exp(−σ ∗K−) exp(β(K0 − 1/2)) (14)

where σ and β are squeezing parameters, with β real and σ a complex number with modulus
|σ | < 1. S is a unitary operator, S†S = 1, and provides a representation of the group
SU(1, 1). With it we may make unitary transformations of the bosonic annihilation and
creation operators, such that

S(σ, β)bS†(σ, β) = e−iβ(1 − |σ |2)−1/2(b − σb†) ≡ c

S(σ, β)b†S†(σ, β) = eiβ(1 − |σ |2)−1/2(b† − σ ∗b) ≡ c†.
(15)

The operators c and c† satisfy the commutation relation [c, c†] = 1, and are henceforth referred
to as squeezed boson operators.

3. Degenerate atomic levels

For degenerate atomic levels, ω0 = 0 = ω̃, the (rescaled) TPRH takes the form

H̃
(ω0=0)
2γ = b†b + λ((b†)2 + b2)σx. (16)

Consequently eigenstates of H̃
(ω0=0)
2γ are also eigenstates of σx , and we are led to consider the

bosonic Hamiltonian,

h̃
(ω0=0)

2γ = b†b ± λ((b†)2 + b2) (17)

where the two signs correspond to the two eigenvalues of σx . The Hamiltonian of equation (17)
has the form of a squeezed harmonic oscillator. In seeking its eigen-solutions, it is convenient
to use the squeezed bosons discussed above.

Inverting relations (15), setting β to zero and constraining σ to be real, we obtain the
following forms for the squeezed bosonic operators

c
†
± ≡ b† ± σb√

1 − σ 2
c± ≡ b ± σb†

√
1 − σ 2

(18)

where the subscript on these operators corresponds to the sign in equation (17). We now
choose σ to be given by

σ = 1 − �

2λ
� ≡

√
1 − 4λ2. (19)
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Writing the Hamiltonian in terms of these squeezed operators with this value of σ we have

h̃
(ω0=0)

2γ = �
(
c
†
±c± + 1

2

) − 1
2 . (20)

The eigenstates of this Hamiltonian are clearly the number states of the c±-type bosons,
which we denote by |n,∓σ 〉, such that c

†
±c±|n,∓σ 〉 = n|n,∓σ 〉. In our original unsqueezed

representation, these states have the form

|n; ∓σ 〉 = (1 − σ 2)1/4

√
n!

[
b† ± σb√

1 − σ 2

]n

e∓ 1
2 σb†2 |0〉 (21)

showing them to be the usual squeezed number states [26]. Thus we see the eigenenergies of
the Hamiltonian of equation (20) to be

Ẽ(ω0=0)
n = {

n + 1
2

}
� − 1

2 (22)

such that h̃
(ω0=0)

2γ |n; ∓σ 〉 = Ẽ(ω0=0)
n |n; ∓σ 〉.

An important feature of the TPRH is revealed by considering this ω0 = 0 case. As we
saw above, the eigenfunctions of the bosonic part of the ω0 = 0 Hamiltonian are number states
of the squeezed bosons. The squeezed vacuum, |0; ∓σ 〉, is proportional to exp

(∓ 1
2σb†2)|0〉

and this state is only normalizable for |σ | < 1, which corresponds to the conditions

|λ| <
1

2

∣∣∣∣4g

ω

∣∣∣∣ < 1. (23)

Above this value of g/ω the ω0 = 0 Hamiltonian does not possess normalizable eigenfunctions
and is thus unphysical. As has been discussed by Ng et al [14], and as is borne out by numerical
diagonalization [27], this analysis still holds for the ω0 �= 0 case as the remaining operator in
the Hamiltonian, ω̃σz, is clearly a bounded operator [28], and thus presents no problems. Thus
we see that the TPRH is only well defined for values of |λ| < 1/2. This restriction on the
coupling is not a severe restriction as, at higher couplings, effects not included in this model,
such as the contributions of off-resonant, one-photon processes, will come into play, thereby
compromising the physical relevance of the model.

4. Isolated exact solutions

We now demonstrate the existence of a class of isolated, exact solutions for the TPRH, similar
to the Juddian solutions found for the one-photon RH. Following I we seek solutions by first
performing a Bogoliubov transformation of the field mode. Bearing in mind the ω̃ = 0 result,
we shall make the transformation from the original bosons b and b† to the squeezed bosons c
and c†,

b = (1 − σ 2)−1/2(c + σc†) b† = (1 − σ 2)−1/2(σc + c†) (24)

where we have assumed that β = 0 and that σ is real and to be determined. The justification
of this is provided by subsequent results.

With this change in bosonic representation, the rescaled TPRH becomes

H̃ 2γ = ω̃σz +
1

κ

(
σc2 + σc†

2
+ (1 + σ 2)c†c + σ 2) +

λ

κ

(
(1 + σ 2)

(
c†

2
+ c2) + 4σc†c + 2σ

)
σx

(25)

where κ ≡ (1 − σ 2). We now use an appropriate matrix representation for the Pauli matrices,
which for this model is one in which σx is diagonal. We use

σx =
[

1 0
0 −1

]
σy =

[
0 i
−i 0

]
σz =

[
0 1
1 0

]
. (26)
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In terms of the two-component wavefunction, |
〉 = (|
1〉
|
2〉

)
, the time-independent Schrödinger

equation for the system, H̃ 2γ |
〉 = Ẽ|
〉, where Ẽ ≡ E/ω is the rescaled energy, then reads

ω̃|
2〉 +
1

κ

{
[σ + λ(1 + σ 2)]

(
c†

2
+ c2) + [1 + σ 2 + 4λσ ]c†c + σ 2 + 2λσ − κẼ

}|
1〉 = 0 (27)

ω̃|
1〉 +
1

κ

{
[σ − λ(1 + σ 2)]

(
c†

2
+ c2) + [1 + σ 2 − 4λσ ]c†c + σ 2 − 2λσ − κẼ

}|
2〉 = 0.

(28)

It is immediately clear that if we set either [σ +λ(1 + σ 2)] or [σ −λ(1 + σ 2)] equal to zero,
we make a determination of σ and reduce either equation (27) or equation (28) considerably.
Choosing the first of these options, we have

σ + λ(1 + σ 2) = 0 (29)

which gives

σ = −1 ± �

2λ
(30)

where � is as defined previously in equation (19). In order that |σ | < 1, we must henceforth
choose the positive sign in equation (30), so that σ → 0 as λ → 0. Thus our squeezing
parameter is

σ = � − 1

2λ
. (31)

Note that had we pursued the other option and set [σ − λ(1 + σ 2)] = 0, we would have
obtained the same determination of the squeezing parameter as for the ω0 = 0 case given by
equation (19). This second solution will be discussed later. Proceeding with this choice of
squeezing given by equation (31), equations (27) and (28) become

ω̃|
2〉 +

{
�c†c −

[
Ẽ +

1

2
− �

2

]}
|
1〉 = 0 (32)

ω̃|
1〉 +
1

�

{
−

√
1 − �2

(
c†

2
+ c2) + (2 − �2)c†c +

1

2
(1 − �) (2 + �) − �Ẽ

}
|
2〉 = 0.

(33)

For |
1〉 and |
2〉 we now choose simple Ansätze in terms of the squeezed number states;

|
1〉 =
N∑

n=0

pn|n; σ 〉 (34)

|
2〉 =
N−2∑
m=0

qm|m; σ 〉 (35)

which gives us the equations
N−2∑
m=0

ω̃qm|m; σ 〉 +
N∑

n=0

pn

{
n� −

[
Ẽ +

1

2
− �

2

]}
|n; σ 〉 = 0 (36)

N∑
n=0

ω̃pn|n; σ 〉 +
N−2∑
m=0

qm

1

�

{
−

√
1 −�2

(√
(m + 1)(m + 2)|m + 2; σ 〉 +

√
m(m− 1)|m− 2; σ 〉

)

+ (2 − �2)m|m; σ 〉 +
1

2
[(1 − �)(2 + �) − 2�Ẽ]|m; σ 〉

}
= 0. (37)
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For the first equation to hold, we must have

pN

{
N� −

[
Ẽ +

1

2
− �

2

]}
= 0. (38)

As pN �= 0 by Ansatz, we must have �N − (
Ẽ + 1

2 − �
2

) = 0. This establishes the so-called
energy baselines as

Ẽ = − 1
2 +

(
N + 1

2

)
�. (39)

Equating the remaining coefficients of the number states in equations (36) and (37) gives us
the following set of equations

ω̃qm + (m − N)�pm = 0 0 � m � N − 2 (40)

ω̃pn −
√

1 − �2

�

√
n(n − 1)qn−2 −

√
1 − �2

�

√
(n + 1)(n + 2)qn+2

+
1

�
[2n + 1 − (n + N + 1)�2]qn = 0 0 � n � N (41)

where qn = 0 for n < 0 and n > N − 2. From the second of these equations we see
that the Hamiltonian in this squeezed representation only couples number states that are
different by multiples of two (for example it couples |n; σ 〉 to |n + 2; σ 〉 and |n + 4; σ 〉
but not to |n + 3; σ 〉). Therefore our Ansätze need only include either all even number
states or all odd number states. This is equivalent to restricting the solutions to a sector
of the Hilbert space with a given Bargmann index, k. We also see that the minimum
value of N is 2. When N is even, we obtain N + 1 equations for the N + 1 coefficients
pn; n = 0, 2, . . . , N, qm; m = 0, 2, . . . , N − 2. When N is odd, we obtain N equations for the
N coefficients pn; n = 1, 3, . . . , N, qm; m = 1, 3, . . . , N −2. Requiring that the determinants
of these equation sets are equal to zero gives us the compatibility conditions which establish
the locations of the Juddian points on the energy baselines. These conditions for the first three
values of N are

2 − 6�2 + ω̃2 = 0 N = 2

6 − 10�2 + ω̃2 = 0 N = 3 (42)

8(3 − 30�2 + 35�4) + 2(7 − 17�2)ω̃2 + ω̃4 = 0 N = 4.

For N even we have a polynomial of the order N
2 in ω̃2 and �2, and hence λ2. For N odd, the

corresponding polynomial is of order
(

N−1
2

)
. The equations are symmetric under ω̃ → −ω̃ or

λ → −λ, as expected. The solutions of these polynomials locate the exact solutions in ω̃–λ

space.
As in the one-photon case, there exists another degenerate solution at every Juddian point.

This solution can be found by placing [σ − λ(1 + σ 2)] = 0 rather than [σ + λ(1 + σ 2)] = 0
into equations (27) and (28). This simply interchanges the equations and hence the roles of

1 and 
2.

5. Results and discussion

Solving the above complementary conditions we have calculated 12 Juddian points for the
resonant TPRH with 2ω = ω0 = 1, corresponding to values of 2 � N � 7. These are
displayed in table 1, listed to the first ten significant figures, and we have used the original
units of equation (1). The N = 2 and N = 3 cases have such simple complementary conditions
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Table 1. The couplings (g), energies (E), as well as order (N) of the first 12 Juddian points of the
resonant two-photon Rabi Hamiltonian (2ω = ω0 = 1).

N g E

2 0.088 388 347 65 0.633 883 476 5
3 0.068 465 319 69 1.214 155 046
4 0.113 682 913 5 0.685 514 425 9
4 0.055 100 060 04 1.769 611 501
5 0.101 776 178 8 1.346 571 001
5 0.045 873 816 23 2.308 117 863
6 0.119 566 819 6 0.697 761 755 3
6 0.090 655 272 61 1.987 605 007
6 0.039 208 419 53 2.835 982 030
7 0.112 426 500 2 1.389 132 039
7 0.034 196 004 55 3.356 947 455
7 0.081 117 838 21 2.603 139 795

that closed analytic expressions may be found. On resonance these are given by g = 1
8
√

2

and E = 1
4

(
5√
2

− 1
)

for N = 2, and g = 1
8

√
3
10

and E = 1
4

(
7
√

7
10

− 1
)

for N = 3. This
set of 12 Juddian points is indicated on the energy schema of the Hamiltonian in figure 1,
where the schema was obtained by approximate numerical diagonalization via a standard
configuration-interaction method, using a basis size of the lowest 501 harmonic oscillator
states [27]. The energy baselines, E = 1

2

(− 1
2 +

(
N + 1

2

)
�

)
, are also plotted.

As is clearly seen from figure 1, the Juddian solutions found by this method occur at
level-crossings in the energy schema, but that they do not cover every crossing, as is the
case with the one-photon Hamiltonian. Considering the quantum numbers π2γ of the two
intersecting lines at each crossing, we see that the above type of solution can only describe the
crossings of states having π2γ = +1 with ones having π2γ = −1, and of crossings of states
having π2γ = +i with ones having π2γ = −i. The remaining four types of possible crossings
are not described. This situation is summarized in table 2.

This series of crossings can be understood by considering the parity operator �2
2γ

�2
2γ = exp(iπb†b) (43)

which obviously commutes with the Hamiltonian. From considering the eigenvalues of this
operator we see that the Juddian solutions we have described occur between levels which have
the same value of �2

2γ . Thus although the Ansätze of the Juddian solutions above are not
eigenstates of the Fourier-like operator �2γ , they are eigenstates of parity.

These crossings can be viewed in another way. Ng et al have introduced a unitary
transformation which decouples the spin and bosonic degrees of freedom [14]. After the
application of this transformation, the bosonic part of the Hamiltonian is given by

h(M) = 1
2 Mω0(−1)K0−k + 2ω

(
K0 − 1

4

)
+ 4g(K+ + K−) (44)

where the numbers M = ±1, corresponding to the spin degree of freedom, and k = 1
4 , 3

4 ,
corresponding to the Bargmann index, serve to characterize the four independent sub-spaces
into which the full Hilbert space of the Hamiltonian decomposes under this transformation.
We thus see that the crossings detailed above occur between states with the same Bargmann
k index, but with different M indices. By contrast the missing crossings occur between states
with different values of k.
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6
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7

Figure 1. The first 12 Juddian points (diamonds) of the two-photon Rabi Hamiltonian determined
by the method outlined in the text, plotted against the energy spectrum determined numerically
(solid lines). Also plotted are the energy baselines (dotted lines). Each point is labelled with its
order N. The Hamiltonian is resonant; 2ω = ω0 = 1.

Table 2. Description of the parities of the level-crossings described by the TPRH Juddian solutions
presented here. ‘y’ denotes that the crossing is described, ‘n’ that it is not, whereas ‘–’ indicates
that no such crossing occurs.

+1 +i −1 −i

+1 – n y n
+i n – n y
−1 y n – n
−i n y n –

The reason why the above Ansätze can describe these solutions and not the others is
as follows. The solutions that we have been able to find occur at crossings between energy
eigenfunctions that both have the same Bargmann index k, which means that both states
are composed of either all even or all odd number states. At the Juddian points these two
eigenstates become degenerate in energy and thus, to find the energy at the level-crossing
we may form a linear superposition of the two eigenstates, which will, in general, not be an
eigenstate of �2

2γ . Because the degenerate energy eigenstates belong to the same k-sector,
the formation of the superposition allows the individual terms in one wavefunction to add to
the terms in the other. If we form the superposition correctly, the resultant wavefunction may
have a form much simpler than the constituent wavefunctions. This is exactly the case when
we choose the Ansatz (35).
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The solutions that we have been unable to find with the above method occur at the level-
crossings between energy eigenstates that have different Bargmann indices. This means that
one eigenstate is composed of odd number states, whilst the other is composed only of even
number states. Consequently, no superposition of these states will lead to a reduction in the
complexity of either wavefunction and we have been unable to find simple Ansätze at these
level-crossings.

Although the above method is not directly extensible to the remaining crossings, it may
still be the case that exact solutions can be found. Although there is no a priori reason to
expect that these exact solutions exist, by looking at the energy schema generated numerically,
we observe that the remaining level-crossings appear to lie along the base-lines described by

Ẽ = − 1
2 + n� n = 2, 3, . . . (45)

where, as previously, � = √
1 − 4λ2. These baselines are so similar to the baselines for the

Juddian solutions found above that it would seem likely that Juddian solutions could also be
found at these remaining crossings.

6. Conclusions

We have shown that a set of isolated, exact solutions exists for the two-photon Rabi
Hamiltonian. These are seen to occur at a subset of the level-crossings in the energy schema
and although we have not described every level crossing, we have been able to explain this in
terms of the symmetry properties of the crossing states.

This type of isolated solution also occurs in the single-photon Rabi Hamiltonian, where
they are referred to as Juddian solutions. Several methods have been proposed for finding
these solutions [18, 29]. In I we have given a method for finding these solutions that is
directly analogous to the one used here, except that for the one-photon case we have used
displaced, rather than squeezed, bosons. In this case, the Ansatz does provide solutions at
every level-crossing in the spectrum. It should be noted that the single-photon Hamiltonian
is a simpler model than the TPRH, as the conserved quantum number analogous to π2γ only
has two eigenvalues, and thus there is only one type of level crossing, whereas in the current
model �2γ has four eigenvalues and there are six different types of crossing.

It is hoped that the results presented here, in conjunction with those in I, will be of use
in the analysis of this kind of non-adiabatic model. These isolated solutions seem an ideal
starting point for the analysis of this kind of situation, since they provide exact results which
may be used as bench-marks for further methods. They also provide crucial insight into the
symmetries of the model.
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